The difference between stepper motor and servo motor

The rotor inside the servo motor is a permanent magnet. The U/V/W three-phase electric motor controlled by the driver forms an electromagnetic field. The rotor rotates under the action of the magnetic field. At the same time, the encoder feedback signal from the motor is supplied to the driver. The driver according to the feedback value and target. The values ​​are compared to adjust the angle at which the rotor rotates. The accuracy of the servo motor is determined by the accuracy (number of lines) of the encoder.

What is a servo motor? There are several types? What is the job characteristics?

A: A servo motor, also known as an actuator motor, is used as an actuator in an automatic control system to convert an electrical signal received into an angular or angular velocity output on the motor shaft. Divided into two major categories of DC and AC servo motor, its main feature is that when the signal voltage is zero, there is no rotation phenomenon, and the rotation speed decreases uniformly with the increase of torque.

What is the difference in function between AC servo motor and brushless DC servo motor?

A: The AC servo is better because it is a sine wave control ball screw and the torque ripple is small. The DC servo is a trapezoidal wave. But DC servo is simpler and cheaper. Permanent magnet AC servo motor Since the 1980s, with the development of integrated circuits, power electronics technology and AC variable speed drive technology, permanent magnet AC servo drive technology has developed prominently. Famous electric manufacturers from all over the world have successively launched their own AC servos. The range of motors and servo drives is constantly being refined and updated. AC servo system has become the main development direction of modern high-performance servo system, which makes the original DC servo face the crisis of being eliminated. After the 1990s, the AC servo system that has been commercialized in various countries around the world is a sinusoidal motor servo drive with full digital control. The development of AC servo drives in the field of transmission is changing with each passing day.

Compared with the DC servo motor, the permanent magnet AC servo motor has the following main advantages: (1) No brush and commutator, so the work is reliable and the maintenance and maintenance requirements are low. (2) The stator winding heat dissipation is convenient. (3) The inertia is small, and it is easy to improve the system's rapidity of the bellows coupling. (4) Adapted to high speed and large torque working conditions. (5) Smaller volume and weight at the same power.

Servo and stepper motor

The servo is mainly positioned by pulse. Basically, it can be understood that when the servo motor receives one pulse, it will rotate the angle corresponding to one pulse to realize the displacement. Because the servo motor itself has the function of emitting pulses, the servo motor has every When an angle is rotated, a corresponding number of pulses are emitted, so that the pulse received by the servo motor forms an echo, or a closed loop, so that the system knows how many pulses are sent to the servo motor, and how many pulses are received at the same time. In this way, the rotation of the motor can be controlled very accurately, so that accurate positioning can be achieved, which can reach 0.001 mm.

The stepper motor is a discrete motion device that is intrinsically linked to modern digital control technology. In the current domestic digital control system, the application of stepper motors is very extensive. With the advent of all-digital AC servo systems, AC servo motors are increasingly being used in digital control systems. In order to adapt to the development trend of digital control, stepping motor or all-digital AC servo motor is mostly used as the execution motor in the motion control system. Although the two are similar in control mode (burst and direction signal) elastic coupling, there are large differences in performance and application. Now compare the performance of the two.

First, the control accuracy is different

The two-phase hybrid stepping motor step angle is generally 3.6 °, 1.8 °, and the five-phase hybrid stepping motor step angle is generally 0.72 °, 0.36 °. There are also some high performance stepper motors with smaller step angles. For example, a stepping motor for a slow wire-cutting machine produced by Sitong has a step angle of 0.09°; a three-phase hybrid stepping motor produced by BERGER LAHR can pass the step angle. The DIP switches are set to 1.8°, 0.9°, 0.72°, 0.36°, 0.18°, 0.09°, 0.072°, 0.036°, and are compatible with the step angle of two-phase and five-phase hybrid stepping motors.

The control accuracy of the AC servo motor is guaranteed by the rotary encoder at the rear of the motor shaft. Taking Panasonic's all-digital AC servo motor as an example, for a motor with a standard 2500-line encoder, the pulse equivalent is 360°/10000=0.036° due to the quadruple frequency technology inside the driver. For a motor with a 17-bit encoder, the drive receives one revolution per 217 = 131072 pulse motors, ie its pulse equivalent is 360°/131072 = 9.89 seconds. It is 1/655 of the pulse equivalent of a stepping motor with a step angle of 1.8°.

Second, the low frequency characteristics are different

Stepper motors are prone to low frequency vibration at low speeds. The vibration frequency is related to the load condition and the performance of the driver. It is generally considered that the vibration frequency is half of the take-off frequency of the motor no-load. This low frequency vibration phenomenon, which is determined by the working principle of the stepper motor, is very detrimental to the normal operation of the machine. When the stepper motor works at low speed, damping technology should generally be used to overcome the low frequency vibration phenomenon, such as adding a damper to the motor or using subdivision technology on the drive.

The AC servo motor runs very smoothly with the diaphragm coupling, and vibration does not occur even at low speeds. The AC servo system has a resonance suppression function, which can cover the rigidity of the machine, and has a frequency analysis function (FFT) inside the system, which can detect the resonance point of the machine and facilitate system adjustment.

Third, the difference in frequency characteristics

The output torque of the stepping motor decreases as the speed increases, and it drops sharply at higher speeds, so the maximum operating speed is generally 300-600 RPM. The AC servo motor is a constant torque output, that is, it can output the rated torque within its rated speed (generally 2000RPM or 3000RPM), and it is a constant power output above the rated speed.

Fourth, the overload capacity is different

Stepper motors generally do not have overload capability. The AC servo motor has a strong overload capability. Take the Panasonic AC servo system as an example, it has speed overload and torque overload capability. Its maximum torque is three times the rated torque and can be used to overcome the moment of inertia of the inertia load at the moment of starting. Because there is no such overload capability in the stepping motor, in order to overcome this moment of inertia during the selection, it is often necessary to select a motor with a large torque, and the machine does not need such a large torque during normal operation, and a torque appears. The phenomenon of waste.

Five, different operating performance

The control of the stepping motor is open-loop control. If the starting frequency is too high or the load is too large, it may be lost or blocked. If the speed is too high during the stop, the overshoot may occur. Therefore, in order to ensure the control accuracy, it should be handled well. The problem of rising and falling speed. The AC servo drive system is closed-loop control. The drive can directly sample the feedback signal of the motor encoder. The internal position loop and speed loop are formed. Generally, the stepless motor is lost or overshooted, and the control performance is more reliable.

Sixth, the speed response performance is different

It takes 200 to 400 milliseconds for the stepper motor to accelerate from standstill to the operating speed (typically several hundred revolutions per minute). The AC servo system has better acceleration performance. Taking the Panasonic MSMA 400W AC servo motor as an example, it takes only a few milliseconds to accelerate from standstill to its rated speed of 3000 RPM, which can be used for control applications requiring fast start and stop.

In summary, the AC servo system is superior to the stepper motor in many performance aspects. However, in some occasions where the requirements are not high, stepper motors are often used to perform the motor. Therefore, in the design process of the control system, it is necessary to comprehensively consider the control requirements, cost and other factors, and select the appropriate control motor.

Commutator For Juice Extracter Motor

Commutator For Juice Extractor Motor,Juice Extractor Motor Customized,Dc Micro Motors For Laser Printer,Electric Micro Motors

ZHEJIANG JIAGU ELECTRIC APPLIANCES CO. LTD , https://www.chinajiagu.com

Posted on